Piaget and Programming Robots: Cognitive Developmental Level as a Predictor of Programming Achievement

Louise Flannery and Marina Bers
Piaget and Programming Robots

Cognitive Developmental Level as a Predictor of Programming Achievement
Tufts University
Eliot-Pearson Dept. of Child Development

DevTech Research Group

Learning, Thinking & Cognitive Development + Technology Design → Curricula & Classroom Implementation

Louise P. Flannery & Marina U. Bers

EETC

March 14, 2012
How can new technologies positively support children’s learning and development?
Big Ideas for Small Children

Louise P. Flannery & Marina U. Bers
EETC
March 14, 2012
Why Programming in Early Childhood?

- Revolutionary and yet not
 - Children creatively constructing artifacts is no modern trend!

- Foster high-level cognition
 - Computational Thinking - Analysis, decomposition, abstraction, algorithms
 - Constructionism - Build it, and the learning will come.

- Relationships with technology
 - Help children see themselves as active shapers of technological tools rather than passive consumers

- 21st Century Skills - Technological fluency, new media literacies, creative design / problem solving

- The technocentric trap: Tools are not inherently good/bad
 - Learning contexts matter at least as much as technological affordances
TangibleK In-Depth Study

- How do kindergarteners understand core concepts from the domains of programming and robotics?
- What is their learning trajectory towards these concepts?
Observations

Correspondence Score Frequency

- 10 children
- 19 children

Completeness Score Frequency

- 12 children
- 17 children
Cognitive Development from 4 to 6

Thought Patterns ~ Age 4 (Pre- / Intuitive operations)
- Elaborating & applying symbol systems
- Intuitive & transductive reasoning
- Focus on single perspective or feature

Thought Patterns ~ Age 6+ (Concrete operations)
- Systematic, more adult-like logic
- Use of empirical feedback
- Plan flexibly toward a goal
- Hierarchies & multiple classifications
Primary Research Question

How does cognitive development influence young children’s programming of a robot?

What are the implications for designing and teaching with technology in early childhood?
Sample

- 29 preschoolers and kindergarteners from Boston-area public and private schools
- 4.4 to 6.6 years old (5.6 on average)
- ~40% girls, 60% boys
- ~Half from urban neighborhoods, half suburban
- Nearly all had 1+ parent with a graduate degree
- 75% used a computer at home
- ~One third had experience with programmable robots
 - but it was unclear if the children had programmed the robots
Measures – Programming Achievement

Correspondence
- Selection of instructions for relevance to goal
- Scale from 0-5
- Based on support needed to achieve

Final Program Completeness
- Correspondence + sequencing together
- Scale from 0-4
- Score based on how close the final program was to a complete solution
Cognitive Developmental Framework

Feldman’s Revised Piagetian Stages and Transitions

- Application of symbol systems
- Intuitive or transductive reasoning
- Gradual stage transitions
- Inconsistent use of new cognitive structures
- Logical reasoning
- Empirical observations
- Awareness of multiple dimensions leads to classification & hierarchies

Approximate age

2 4 6 8 10 12

Intuitive (Pre-) Operations Concrete Operations

Exploration Elaboration, Application Exploration Elaboration, Application

Louise P. Flannery & Marina U. Bers EETC March 14, 2012
Measures – Cognitive Development

<table>
<thead>
<tr>
<th></th>
<th>Pre-Operational</th>
<th>Transitional</th>
<th>Concrete Operational</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal Focus</td>
<td>Open exploration</td>
<td>Mixed</td>
<td>Given goal</td>
</tr>
<tr>
<td>Initial Strategy</td>
<td>None/intuitive</td>
<td>Intuitive with some systematic logic</td>
<td>Step-by-step</td>
</tr>
<tr>
<td>Debugging Interest</td>
<td>Indifferent to incorrect solutions</td>
<td>Interested but may not know how</td>
<td>Driven to find the best answer</td>
</tr>
<tr>
<td>Debugging Strategy</td>
<td>None/intuitive (guess-and-check)</td>
<td>Mix of intuitive and limited logical approaches</td>
<td>Logical & flexible approach. Uses empirical feedback.</td>
</tr>
</tbody>
</table>
Results: Developmental Levels

- 48% 5.9 years old
- 28% 5.1 years old
- 24% 5.6 years old
Programming: Late Pre-operations

- **Focus**
 - Open-ended exploring or
 - Short Hokey-Pokey attempts

- **Strategies**
 - Identified 1-2 actions
 - Started over rather than revising a program
 - Moved on to other explorations – programming, Legos, etc.

- **End Results**
 - Called exploratory programs successful Hokey-Pokeys
 - Not much concern over unfinished task
Programming in the Transition

- **Focus**
 - Interested in the Hokey-Pokey challenge
 - Happily switches to other open explorations though

- **Strategies**
 - Some systematic progress or use of testing
 - Some intuitive or guess-and-check strategies

- **End Results**
 - Prototypes – e.g. the systematic revisions had been applied to making the program match in length rather than elements, or
 - Partially / nearly complete programs

Focus
- Some explored first, others started Hokey-Pokey right away
- After starting the Hokey-Pokey, they stayed on task until the solution was complete

Strategies
- Systematic reasoning: recalled song line-by-line
- Revision based on watching the robot
- Some also ‘read through’ their programs
- Recognized what was wrong and how to fix it

End Results
- Intent on getting the program exactly right
- Only 3 of the 14 children had one error left in the end
Comparison of Final Programs

- Late Pre-operations

- Transitional

- Early Concrete Operations
Results: Development and Achievement

Mean Correspondence Score by Cognitive Developmental Level

- Pre-Operational: 1.9
- Transitional: 3.9
- Concrete Operational: 5.0

Mean Program Completeness Score by Cognitive Developmental Level

- Pre-Operational: 0.1
- Transitional: 1.9
- Concrete Operational: 3.8

* Statistically significant, $p < .05$ and $p < .001$, respectively.

CD predicts 64% of correspondence variation

CD predicts 87% of completeness variation

Statistically significant, $p < .001$, for all comparisons.
Implications for Curricula

Pre-Operational
- Children can
 - Explore tools’ possibilities and limits
 - Work towards setting goals
- Teachers can support
 - Observation & reflection
 - Expand explorations
 - Model & scaffold systematic approaches to specific goals

Concrete Operational
- Children can work on
 - Contextualized goals,
 - Open-ended exploration, especially for new concepts
- Teachers can support
 - Sharing of strategies
 - Expanding to increasingly complex goals and instructions
Implications for Design & Research

- Instruction set
 - Compelling across ages for introductory activities
- For older / more experienced CHERP programmers
 - More complex instruction sets
 - Lower-level instructions
- For younger children, embedded debugging support?
 - Or, is this the role of the teacher and child?
Future Directions

- Strengthening the current study
 - New, truly correlational study under way using a separate cognitive measure – initial data support the current results
 - Assess multiple programming activities per child
 - Sample size and characteristics

- Open questions to investigate
 - Compare achievement on tasks w/ actions only vs. control flow
 - Analyze the evolution of achievement over multiple activities
 - Research the process of moving from small, high-level instruction set to increasingly large, low-level set
 - Test curricular recommendations
Final Thoughts

- Developmentally-based trajectory for programming
 - Similar to other skills like drawing and block-building

- Reasoning skills for tailoring instruction as early childhood education includes more academic content
 - Teachers could estimate cognitive development / reasoning from existing activities

- Technology in early childhood
 - Scaffold rather than put off cognitively rich technology-based experiences like programming robots
 - Redefinition of ‘screen-time’
Acknowledgements

To Marina Bers, David Henry Feldman & Baktiar Mikhak, all of whose research and advising were invaluable to me throughout this project.

The DevTech Research Group, particularly the TangibleK team.
Thank you for coming!
References